There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (1 - a)(\frac{-1}{(\frac{(1 - x)b}{(1 - a)})})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2a}{(-x + 1)b} - \frac{1}{(-x + 1)b} - \frac{a^{2}}{(-x + 1)b}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2a}{(-x + 1)b} - \frac{1}{(-x + 1)b} - \frac{a^{2}}{(-x + 1)b}\right)}{dx}\\=&\frac{2(\frac{-(-1 + 0)}{(-x + 1)^{2}})a}{b} + 0 - \frac{(\frac{-(-1 + 0)}{(-x + 1)^{2}})}{b} + 0 - \frac{(\frac{-(-1 + 0)}{(-x + 1)^{2}})a^{2}}{b} + 0\\=&\frac{2a}{(-x + 1)^{2}b} - \frac{1}{(-x + 1)^{2}b} - \frac{a^{2}}{(-x + 1)^{2}b}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !