Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(\frac{512}{x} - 25)}^{2} + \frac{{(x - 200)}^{2}}{100}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{262144}{x^{2}} + \frac{1}{100}x^{2} - \frac{25600}{x} - 4x + 1025\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{262144}{x^{2}} + \frac{1}{100}x^{2} - \frac{25600}{x} - 4x + 1025\right)}{dx}\\=&\frac{262144*-2}{x^{3}} + \frac{1}{100}*2x - \frac{25600*-1}{x^{2}} - 4 + 0\\=&\frac{-524288}{x^{3}} + \frac{x}{50} + \frac{25600}{x^{2}} - 4\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return