Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ \frac{(6 - k)}{(6 - k)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{k}{(-k + 6)} + \frac{6}{(-k + 6)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{k}{(-k + 6)} + \frac{6}{(-k + 6)}\right)}{dx}\\=& - (\frac{-(0 + 0)}{(-k + 6)^{2}})k + 0 + 6(\frac{-(0 + 0)}{(-k + 6)^{2}})\\=&0\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return