There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{cos(x)}{sqrt(x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{cos(x)}{sqrt(x)}\right)}{dx}\\=&\frac{-sin(x)}{sqrt(x)} + \frac{cos(x)*-\frac{1}{2}}{(x)(x)^{\frac{1}{2}}}\\=&\frac{-sin(x)}{sqrt(x)} - \frac{cos(x)}{2x^{\frac{3}{2}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-sin(x)}{sqrt(x)} - \frac{cos(x)}{2x^{\frac{3}{2}}}\right)}{dx}\\=&\frac{-cos(x)}{sqrt(x)} - \frac{sin(x)*-\frac{1}{2}}{(x)(x)^{\frac{1}{2}}} - \frac{\frac{-3}{2}cos(x)}{2x^{\frac{5}{2}}} - \frac{-sin(x)}{2x^{\frac{3}{2}}}\\=&\frac{-cos(x)}{sqrt(x)} + \frac{sin(x)}{x^{\frac{3}{2}}} + \frac{3cos(x)}{4x^{\frac{5}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !