There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{pqxx}{((1 - xp)(1 - xq))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{pqx^{2}}{(-qx - px + pqx^{2} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{pqx^{2}}{(-qx - px + pqx^{2} + 1)}\right)}{dx}\\=&(\frac{-(-q - p + pq*2x + 0)}{(-qx - px + pqx^{2} + 1)^{2}})pqx^{2} + \frac{pq*2x}{(-qx - px + pqx^{2} + 1)}\\=&\frac{pq^{2}x^{2}}{(-qx - px + pqx^{2} + 1)^{2}} + \frac{p^{2}qx^{2}}{(-qx - px + pqx^{2} + 1)^{2}} - \frac{2p^{2}q^{2}x^{3}}{(-qx - px + pqx^{2} + 1)^{2}} + \frac{2pqx}{(-qx - px + pqx^{2} + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !