There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(3925000x)}{(20x - 0.0015)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{3925000x}{(20x - 0.0015)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{3925000x}{(20x - 0.0015)}\right)}{dx}\\=&3925000(\frac{-(20 + 0)}{(20x - 0.0015)^{2}})x + \frac{3925000}{(20x - 0.0015)}\\=&\frac{-78500000x}{(20x - 0.0015)(20x - 0.0015)} + \frac{3925000}{(20x - 0.0015)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !