Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(log_{2}^{x})}^{log_{2}^{x}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {log_{2}^{x}}^{log_{2}^{x}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {log_{2}^{x}}^{log_{2}^{x}}\right)}{dx}\\=&({log_{2}^{x}}^{log_{2}^{x}}(((\frac{(\frac{(1)}{(x)} - \frac{(0)log_{2}^{x}}{(2)})}{(ln(2))}))ln(log_{2}^{x}) + \frac{(log_{2}^{x})((\frac{(\frac{(1)}{(x)} - \frac{(0)log_{2}^{x}}{(2)})}{(ln(2))}))}{(log_{2}^{x})}))\\=&\frac{{log_{2}^{x}}^{log_{2}^{x}}ln(log_{2}^{x})}{xln(2)} + \frac{{log_{2}^{x}}^{log_{2}^{x}}}{xln(2)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return