There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(1 + {(1 + {x}^{2})}^{\frac{1}{2}})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln((x^{2} + 1)^{\frac{1}{2}} + 1)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln((x^{2} + 1)^{\frac{1}{2}} + 1)\right)}{dx}\\=&\frac{((\frac{\frac{1}{2}(2x + 0)}{(x^{2} + 1)^{\frac{1}{2}}}) + 0)}{((x^{2} + 1)^{\frac{1}{2}} + 1)}\\=&\frac{x}{((x^{2} + 1)^{\frac{1}{2}} + 1)(x^{2} + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !