There are 1 questions in this calculation: for each question, the 2 derivative of r is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ e^{-30{r}^{2}}(1 + rsin(5M))cos(T)\ with\ respect\ to\ r:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = e^{-30r^{2}}cos(T) + re^{-30r^{2}}sin(5M)cos(T)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( e^{-30r^{2}}cos(T) + re^{-30r^{2}}sin(5M)cos(T)\right)}{dr}\\=&e^{-30r^{2}}*-30*2rcos(T) + e^{-30r^{2}}*-sin(T)*0 + e^{-30r^{2}}sin(5M)cos(T) + re^{-30r^{2}}*-30*2rsin(5M)cos(T) + re^{-30r^{2}}cos(5M)*0cos(T) + re^{-30r^{2}}sin(5M)*-sin(T)*0\\=&-60re^{-30r^{2}}cos(T) + e^{-30r^{2}}sin(5M)cos(T) - 60r^{2}e^{-30r^{2}}sin(5M)cos(T)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( -60re^{-30r^{2}}cos(T) + e^{-30r^{2}}sin(5M)cos(T) - 60r^{2}e^{-30r^{2}}sin(5M)cos(T)\right)}{dr}\\=&-60e^{-30r^{2}}cos(T) - 60re^{-30r^{2}}*-30*2rcos(T) - 60re^{-30r^{2}}*-sin(T)*0 + e^{-30r^{2}}*-30*2rsin(5M)cos(T) + e^{-30r^{2}}cos(5M)*0cos(T) + e^{-30r^{2}}sin(5M)*-sin(T)*0 - 60*2re^{-30r^{2}}sin(5M)cos(T) - 60r^{2}e^{-30r^{2}}*-30*2rsin(5M)cos(T) - 60r^{2}e^{-30r^{2}}cos(5M)*0cos(T) - 60r^{2}e^{-30r^{2}}sin(5M)*-sin(T)*0\\=&-60e^{-30r^{2}}cos(T) + 3600r^{2}e^{-30r^{2}}cos(T) - 180re^{-30r^{2}}sin(5M)cos(T) + 3600r^{3}e^{-30r^{2}}sin(5M)cos(T)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !