Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{20000}{x} + 60{x}^{(\frac{-3}{5})}{(8x + 50)}^{\frac{1}{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{20000}{x} + \frac{60(8x + 50)^{\frac{1}{2}}}{x^{\frac{3}{5}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{20000}{x} + \frac{60(8x + 50)^{\frac{1}{2}}}{x^{\frac{3}{5}}}\right)}{dx}\\=&\frac{20000*-1}{x^{2}} + \frac{60(\frac{\frac{1}{2}(8 + 0)}{(8x + 50)^{\frac{1}{2}}})}{x^{\frac{3}{5}}} + \frac{60(8x + 50)^{\frac{1}{2}}*\frac{-3}{5}}{x^{\frac{8}{5}}}\\=&\frac{-20000}{x^{2}} + \frac{240}{(8x + 50)^{\frac{1}{2}}x^{\frac{3}{5}}} - \frac{36(8x + 50)^{\frac{1}{2}}}{x^{\frac{8}{5}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return