There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{20000}{q} + 60{q}^{(\frac{-3}{5})}{(8q + 50)}^{\frac{1}{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{20000}{q} + \frac{60(8q + 50)^{\frac{1}{2}}}{q^{\frac{3}{5}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{20000}{q} + \frac{60(8q + 50)^{\frac{1}{2}}}{q^{\frac{3}{5}}}\right)}{dx}\\=&0 + \frac{60(\frac{\frac{1}{2}(0 + 0)}{(8q + 50)^{\frac{1}{2}}})}{q^{\frac{3}{5}}} + 0\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !