There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(w - 24y)}{(x - y)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{w}{(x - y)} - \frac{24y}{(x - y)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{w}{(x - y)} - \frac{24y}{(x - y)}\right)}{dx}\\=&(\frac{-(1 + 0)}{(x - y)^{2}})w + 0 - 24(\frac{-(1 + 0)}{(x - y)^{2}})y + 0\\=&\frac{-w}{(x - y)^{2}} + \frac{24y}{(x - y)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !