There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(1.9595 + \frac{0.70952{x}^{2}}{({x}^{2} - 0.0216)})}^{0.5}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (\frac{0.70952x}{(x - 0.0216)} + 1.9595)^{\frac{1}{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (\frac{0.70952x}{(x - 0.0216)} + 1.9595)^{\frac{1}{2}}\right)}{dx}\\=&(\frac{0.5(0.70952(\frac{-(1 + 0)}{(x - 0.0216)^{2}})x + \frac{0.70952}{(x - 0.0216)} + 0)}{(\frac{0.70952x}{(x - 0.0216)} + 1.9595)^{\frac{1}{2}}})\\=&\frac{-0.35476x}{(\frac{0.70952x}{(x - 0.0216)} + 1.9595)^{\frac{1}{2}}(x - 0.0216)(x - 0.0216)} + \frac{0.35476}{(\frac{0.70952x}{(x - 0.0216)} + 1.9595)^{\frac{1}{2}}(x - 0.0216)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !