Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sqrt(\frac{({x}^{2} + 91)}{7} - \frac{{((x + 1 + 2 + 3 + 4 + 5 + 6))}^{2}}{49} + {1}^{-5})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(\frac{6}{49}x^{2} - \frac{6}{7}x + 5)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(\frac{6}{49}x^{2} - \frac{6}{7}x + 5)\right)}{dx}\\=&\frac{(\frac{6}{49}*2x - \frac{6}{7} + 0)*\frac{1}{2}}{(\frac{6}{49}x^{2} - \frac{6}{7}x + 5)^{\frac{1}{2}}}\\=&\frac{6x}{49(\frac{6}{49}x^{2} - \frac{6}{7}x + 5)^{\frac{1}{2}}} - \frac{3}{7(\frac{6}{49}x^{2} - \frac{6}{7}x + 5)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return