There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(sin(4)x)}{32} - \frac{(sin(2)x)}{4} + (\frac{3x}{8})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{32}xsin(4) - \frac{1}{4}xsin(2) + \frac{3}{8}x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{32}xsin(4) - \frac{1}{4}xsin(2) + \frac{3}{8}x\right)}{dx}\\=&\frac{1}{32}sin(4) + \frac{1}{32}xcos(4)*0 - \frac{1}{4}sin(2) - \frac{1}{4}xcos(2)*0 + \frac{3}{8}\\=&\frac{sin(4)}{32} - \frac{sin(2)}{4} + \frac{3}{8}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !