There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (258 - x){\frac{1}{(\frac{-x}{129} + 4)}}^{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{x}{(\frac{-1}{129}x + 4)^{3}} + \frac{258}{(\frac{-1}{129}x + 4)^{3}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{x}{(\frac{-1}{129}x + 4)^{3}} + \frac{258}{(\frac{-1}{129}x + 4)^{3}}\right)}{dx}\\=& - (\frac{-3(\frac{-1}{129} + 0)}{(\frac{-1}{129}x + 4)^{4}})x - \frac{1}{(\frac{-1}{129}x + 4)^{3}} + 258(\frac{-3(\frac{-1}{129} + 0)}{(\frac{-1}{129}x + 4)^{4}})\\=& - \frac{x}{43(\frac{-1}{129}x + 4)^{4}} + \frac{6}{(\frac{-1}{129}x + 4)^{4}} - \frac{1}{(\frac{-1}{129}x + 4)^{3}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !