Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {({{{e}^{x}}^{x}}^{{e}^{x}})}^{{e}^{x}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {{{{e}^{x}}^{x}}^{{e}^{x}}}^{{e}^{x}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {{{{e}^{x}}^{x}}^{{e}^{x}}}^{{e}^{x}}\right)}{dx}\\=&({{{{e}^{x}}^{x}}^{{e}^{x}}}^{{e}^{x}}((({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})))ln({{{e}^{x}}^{x}}^{{e}^{x}}) + \frac{({e}^{x})(({{{e}^{x}}^{x}}^{{e}^{x}}((({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})))ln({{e}^{x}}^{x}) + \frac{({e}^{x})(({{e}^{x}}^{x}((1)ln({e}^{x}) + \frac{(x)(({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})))}{({e}^{x})})))}{({{e}^{x}}^{x})})))}{({{{e}^{x}}^{x}}^{{e}^{x}})}))\\=&{e}^{x}{{{{e}^{x}}^{x}}^{{e}^{x}}}^{{e}^{x}}ln({{{e}^{x}}^{x}}^{{e}^{x}}) + {e}^{(2x)}{{{{e}^{x}}^{x}}^{{e}^{x}}}^{{e}^{x}}ln({{e}^{x}}^{x}) + {e}^{(2x)}{{{{e}^{x}}^{x}}^{{e}^{x}}}^{{e}^{x}}ln({e}^{x}) + x{{{{e}^{x}}^{x}}^{{e}^{x}}}^{{e}^{x}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return