There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {{{e}^{x}}^{x}}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {{{e}^{x}}^{x}}^{x}\right)}{dx}\\=&({{{e}^{x}}^{x}}^{x}((1)ln({{e}^{x}}^{x}) + \frac{(x)(({{e}^{x}}^{x}((1)ln({e}^{x}) + \frac{(x)(({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})))}{({e}^{x})})))}{({{e}^{x}}^{x})}))\\=&{{{e}^{x}}^{x}}^{x}ln({{e}^{x}}^{x}) + x{{{e}^{x}}^{x}}^{x}ln({e}^{x}) + x^{2}{{{e}^{x}}^{x}}^{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !