Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ x(arcsin(x) + bcos(x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xarcsin(x) + bxcos(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xarcsin(x) + bxcos(x)\right)}{dx}\\=&arcsin(x) + x(\frac{(1)}{((1 - (x)^{2})^{\frac{1}{2}})}) + bcos(x) + bx*-sin(x)\\=&arcsin(x) + \frac{x}{(-x^{2} + 1)^{\frac{1}{2}}} + bcos(x) - bxsin(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( arcsin(x) + \frac{x}{(-x^{2} + 1)^{\frac{1}{2}}} + bcos(x) - bxsin(x)\right)}{dx}\\=&(\frac{(1)}{((1 - (x)^{2})^{\frac{1}{2}})}) + (\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})x + \frac{1}{(-x^{2} + 1)^{\frac{1}{2}}} + b*-sin(x) - bsin(x) - bxcos(x)\\=&\frac{x^{2}}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{1}{(-x^{2} + 1)^{\frac{1}{2}}} + \frac{1}{(-x^{2} + 1)^{\frac{1}{2}}} - 2bsin(x) - bxcos(x)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return