There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ x(ln(x))(ln(x)) + (xx - 1)ln(x) - 3{(x - 1)}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xln^{2}(x) + x^{2}ln(x) - ln(x) - 3x^{2} + 6x - 3\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xln^{2}(x) + x^{2}ln(x) - ln(x) - 3x^{2} + 6x - 3\right)}{dx}\\=&ln^{2}(x) + \frac{x*2ln(x)}{(x)} + 2xln(x) + \frac{x^{2}}{(x)} - \frac{1}{(x)} - 3*2x + 6 + 0\\=&ln^{2}(x) + 2ln(x) + 2xln(x) - 5x - \frac{1}{x} + 6\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !