There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ 2x - lg(x) + \frac{1}{lg(x)ln(x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2x - lg(x) + \frac{1}{ln(x)lg(x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2x - lg(x) + \frac{1}{ln(x)lg(x)}\right)}{dx}\\=&2 - \frac{1}{ln{10}(x)} + \frac{-1}{ln^{2}(x)(x)lg(x)} + \frac{-1}{ln(x)lg^{2}(x)ln{10}(x)}\\=& - \frac{1}{xln^{2}(x)lg(x)} - \frac{1}{xln{10}ln(x)lg^{2}(x)} - \frac{1}{xln{10}} + 2\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( - \frac{1}{xln^{2}(x)lg(x)} - \frac{1}{xln{10}ln(x)lg^{2}(x)} - \frac{1}{xln{10}} + 2\right)}{dx}\\=& - \frac{-1}{x^{2}ln^{2}(x)lg(x)} - \frac{-2}{xln^{3}(x)(x)lg(x)} - \frac{-1}{xln^{2}(x)lg^{2}(x)ln{10}(x)} - \frac{-1}{x^{2}ln{10}ln(x)lg^{2}(x)} - \frac{-0}{xln^{2}{10}ln(x)lg^{2}(x)} - \frac{-1}{xln{10}ln^{2}(x)(x)lg^{2}(x)} - \frac{-2}{xln{10}ln(x)lg^{3}(x)ln{10}(x)} - \frac{-1}{x^{2}ln{10}} - \frac{-0}{xln^{2}{10}} + 0\\=&\frac{1}{x^{2}ln^{2}(x)lg(x)} + \frac{2}{x^{2}ln^{3}(x)lg(x)} + \frac{1}{x^{2}ln{10}ln^{2}(x)lg^{2}(x)} + \frac{1}{x^{2}ln{10}ln(x)lg^{2}(x)} + \frac{1}{x^{2}ln^{2}(x)ln{10}lg^{2}(x)} + \frac{2}{x^{2}ln(x)ln^{2}{10}lg^{3}(x)} + \frac{1}{x^{2}ln{10}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !