There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{-800}{({x}^{2} + 5x + 40)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-800}{(x^{2} + 5x + 40)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-800}{(x^{2} + 5x + 40)}\right)}{dx}\\=&-800(\frac{-(2x + 5 + 0)}{(x^{2} + 5x + 40)^{2}})\\=&\frac{1600x}{(x^{2} + 5x + 40)^{2}} + \frac{4000}{(x^{2} + 5x + 40)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !