There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(2x - 1)}{({3}^{x})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2x{3}^{(-x)} - {3}^{(-x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2x{3}^{(-x)} - {3}^{(-x)}\right)}{dx}\\=&2 * {3}^{(-x)} + 2x({3}^{(-x)}((-1)ln(3) + \frac{(-x)(0)}{(3)})) - ({3}^{(-x)}((-1)ln(3) + \frac{(-x)(0)}{(3)}))\\=&{3}^{(-x)}ln(3) - 2x{3}^{(-x)}ln(3) + 2 * {3}^{(-x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !