Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of y is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ y{(1 - {x}^{2}{y}^{2})}^{(\frac{-1}{2})}\ with\ respect\ to\ y:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{y}{(-x^{2}y^{2} + 1)^{\frac{1}{2}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{y}{(-x^{2}y^{2} + 1)^{\frac{1}{2}}}\right)}{dy}\\=&(\frac{\frac{-1}{2}(-x^{2}*2y + 0)}{(-x^{2}y^{2} + 1)^{\frac{3}{2}}})y + \frac{1}{(-x^{2}y^{2} + 1)^{\frac{1}{2}}}\\=&\frac{x^{2}y^{2}}{(-x^{2}y^{2} + 1)^{\frac{3}{2}}} + \frac{1}{(-x^{2}y^{2} + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return