There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{4xe{e^{x}}^{x}}{sqrt(x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{4x{e^{x}}^{x}e}{sqrt(x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{4x{e^{x}}^{x}e}{sqrt(x)}\right)}{dx}\\=&\frac{4{e^{x}}^{x}e}{sqrt(x)} + \frac{4x({e^{x}}^{x}((1)ln(e^{x}) + \frac{(x)(e^{x})}{(e^{x})}))e}{sqrt(x)} + \frac{4x{e^{x}}^{x}*0}{sqrt(x)} + \frac{4x{e^{x}}^{x}e*-\frac{1}{2}}{(x)(x)^{\frac{1}{2}}}\\=&\frac{4{e^{x}}^{x}e}{sqrt(x)} + \frac{4x{e^{x}}^{x}eln(e^{x})}{sqrt(x)} + \frac{4x^{2}{e^{x}}^{x}e}{sqrt(x)} - \frac{2{e^{x}}^{x}e}{x^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !