Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{3275x}{({x}^{2} + 102555416 + 20517x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{3275x}{(x^{2} + 20517x + 102555416)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{3275x}{(x^{2} + 20517x + 102555416)}\right)}{dx}\\=&3275(\frac{-(2x + 20517 + 0)}{(x^{2} + 20517x + 102555416)^{2}})x + \frac{3275}{(x^{2} + 20517x + 102555416)}\\=&\frac{-6550x^{2}}{(x^{2} + 20517x + 102555416)^{2}} - \frac{67193175x}{(x^{2} + 20517x + 102555416)^{2}} + \frac{3275}{(x^{2} + 20517x + 102555416)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return