There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{k(2xb - t + 2a - 2c)a(4bk - x)}{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 4k^{2}b^{2}ax - kbax^{2} - 2k^{2}bta + \frac{1}{2}ktax - 4k^{2}bac - ka^{2}x + 4k^{2}ba^{2} + kacx\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 4k^{2}b^{2}ax - kbax^{2} - 2k^{2}bta + \frac{1}{2}ktax - 4k^{2}bac - ka^{2}x + 4k^{2}ba^{2} + kacx\right)}{dx}\\=&4k^{2}b^{2}a - kba*2x + 0 + \frac{1}{2}kta + 0 - ka^{2} + 0 + kac\\=& - 2kbax + 4k^{2}b^{2}a + \frac{kta}{2} + kac - ka^{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !