There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(4x - 1312)}{(65x + 8505)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{4x}{(65x + 8505)} - \frac{1312}{(65x + 8505)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{4x}{(65x + 8505)} - \frac{1312}{(65x + 8505)}\right)}{dx}\\=&4(\frac{-(65 + 0)}{(65x + 8505)^{2}})x + \frac{4}{(65x + 8505)} - 1312(\frac{-(65 + 0)}{(65x + 8505)^{2}})\\=&\frac{-260x}{(65x + 8505)^{2}} + \frac{85280}{(65x + 8505)^{2}} + \frac{4}{(65x + 8505)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !