Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(t{(sin(x))}^{2})}{(2t(1 - cos(x)) - a)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{tsin^{2}(x)}{(-2tcos(x) + 2t - a)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{tsin^{2}(x)}{(-2tcos(x) + 2t - a)}\right)}{dx}\\=&(\frac{-(-2t*-sin(x) + 0 + 0)}{(-2tcos(x) + 2t - a)^{2}})tsin^{2}(x) + \frac{t*2sin(x)cos(x)}{(-2tcos(x) + 2t - a)}\\=&\frac{2tsin(x)cos(x)}{(-2tcos(x) + 2t - a)} - \frac{2t^{2}sin^{3}(x)}{(-2tcos(x) + 2t - a)^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return