There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 3x{(2 - x)}^{\frac{1}{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 3(-x + 2)^{\frac{1}{2}}x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 3(-x + 2)^{\frac{1}{2}}x\right)}{dx}\\=&3(\frac{\frac{1}{2}(-1 + 0)}{(-x + 2)^{\frac{1}{2}}})x + 3(-x + 2)^{\frac{1}{2}}\\=&\frac{-3x}{2(-x + 2)^{\frac{1}{2}}} + 3(-x + 2)^{\frac{1}{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !