There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 2x + 2*1.77(16 - x)(26.1{\frac{1}{(282.24 + {(16 - x)}^{2})}}^{0.5} - 1)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2x - \frac{92.394x}{(-x + 298.24)^{\frac{1}{2}}} + \frac{1478.304}{(-x + 298.24)^{\frac{1}{2}}} + 3.54x - 56.64\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2x - \frac{92.394x}{(-x + 298.24)^{\frac{1}{2}}} + \frac{1478.304}{(-x + 298.24)^{\frac{1}{2}}} + 3.54x - 56.64\right)}{dx}\\=&2 - 92.394(\frac{-0.5(-1 + 0)}{(-x + 298.24)^{\frac{3}{2}}})x - \frac{92.394}{(-x + 298.24)^{\frac{1}{2}}} + 1478.304(\frac{-0.5(-1 + 0)}{(-x + 298.24)^{\frac{3}{2}}}) + 3.54 + 0\\=& - \frac{46.197x}{(-x + 298.24)^{\frac{3}{2}}} - \frac{92.394}{(-x + 298.24)^{\frac{1}{2}}} + \frac{739.152}{(-x + 298.24)^{\frac{3}{2}}} + 5.54\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !