Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(\frac{x}{(1 + sqrt(1 - {x}^{2}))}) - arcsin(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(\frac{x}{(sqrt(-x^{2} + 1) + 1)}) - arcsin(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(\frac{x}{(sqrt(-x^{2} + 1) + 1)}) - arcsin(x)\right)}{dx}\\=&\frac{((\frac{-(\frac{(-2x + 0)*\frac{1}{2}}{(-x^{2} + 1)^{\frac{1}{2}}} + 0)}{(sqrt(-x^{2} + 1) + 1)^{2}})x + \frac{1}{(sqrt(-x^{2} + 1) + 1)})}{(\frac{x}{(sqrt(-x^{2} + 1) + 1)})} - (\frac{(1)}{((1 - (x)^{2})^{\frac{1}{2}})})\\=&\frac{x}{(sqrt(-x^{2} + 1) + 1)(-x^{2} + 1)^{\frac{1}{2}}} + \frac{1}{x} - \frac{1}{(-x^{2} + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return