There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ sin(x) + sqrt(4 - cos(x)cos(x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sin(x) + sqrt(-cos^{2}(x) + 4)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin(x) + sqrt(-cos^{2}(x) + 4)\right)}{dx}\\=&cos(x) + \frac{(--2cos(x)sin(x) + 0)*\frac{1}{2}}{(-cos^{2}(x) + 4)^{\frac{1}{2}}}\\=&cos(x) + \frac{sin(x)cos(x)}{(-cos^{2}(x) + 4)^{\frac{1}{2}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( cos(x) + \frac{sin(x)cos(x)}{(-cos^{2}(x) + 4)^{\frac{1}{2}}}\right)}{dx}\\=&-sin(x) + (\frac{\frac{-1}{2}(--2cos(x)sin(x) + 0)}{(-cos^{2}(x) + 4)^{\frac{3}{2}}})sin(x)cos(x) + \frac{cos(x)cos(x)}{(-cos^{2}(x) + 4)^{\frac{1}{2}}} + \frac{sin(x)*-sin(x)}{(-cos^{2}(x) + 4)^{\frac{1}{2}}}\\=&-sin(x) - \frac{sin^{2}(x)cos^{2}(x)}{(-cos^{2}(x) + 4)^{\frac{3}{2}}} + \frac{cos^{2}(x)}{(-cos^{2}(x) + 4)^{\frac{1}{2}}} - \frac{sin^{2}(x)}{(-cos^{2}(x) + 4)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !