Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {2}^{\frac{1}{2}}{\frac{1}{2}}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {2}^{\frac{1}{2}}{\frac{1}{2}}^{x}\right)}{dx}\\=&({2}^{\frac{1}{2}}((0)ln(2) + \frac{(\frac{1}{2})(0)}{(2)})){\frac{1}{2}}^{x} + {2}^{\frac{1}{2}}({\frac{1}{2}}^{x}((1)ln(\frac{1}{2}) + \frac{(x)(0)}{(\frac{1}{2})}))\\=&2^{\frac{1}{2}} * {\frac{1}{2}}^{x}ln(\frac{1}{2})\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return