There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (ln(ln(x)) + 1){ln(x)}^{ln(x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {ln(x)}^{ln(x)}ln(ln(x)) + {ln(x)}^{ln(x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {ln(x)}^{ln(x)}ln(ln(x)) + {ln(x)}^{ln(x)}\right)}{dx}\\=&({ln(x)}^{ln(x)}((\frac{1}{(x)})ln(ln(x)) + \frac{(ln(x))(\frac{1}{(x)})}{(ln(x))}))ln(ln(x)) + \frac{{ln(x)}^{ln(x)}}{(ln(x))(x)} + ({ln(x)}^{ln(x)}((\frac{1}{(x)})ln(ln(x)) + \frac{(ln(x))(\frac{1}{(x)})}{(ln(x))}))\\=&\frac{{ln(x)}^{ln(x)}ln^{2}(ln(x))}{x} + \frac{2{ln(x)}^{ln(x)}ln(ln(x))}{x} + \frac{{ln(x)}^{ln(x)}}{xln(x)} + \frac{{ln(x)}^{ln(x)}}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !