There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {e}^{I}nx{x}^{n}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = nx{e}^{I}{x}^{n}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( nx{e}^{I}{x}^{n}\right)}{dx}\\=&n{e}^{I}{x}^{n} + nx({e}^{I}((0)ln(e) + \frac{(I)(0)}{(e)})){x}^{n} + nx{e}^{I}({x}^{n}((0)ln(x) + \frac{(n)(1)}{(x)}))\\=&n{e}^{I}{x}^{n} + n^{2}{x}^{n}{e}^{I}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !