Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {3}^{x} + {x}^{3} + {x}^{\frac{1}{3}} - ({\frac{1}{x}}^{\frac{1}{3}})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {3}^{x} + x^{3} + x^{\frac{1}{3}} - \frac{1}{x^{\frac{1}{3}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {3}^{x} + x^{3} + x^{\frac{1}{3}} - \frac{1}{x^{\frac{1}{3}}}\right)}{dx}\\=&({3}^{x}((1)ln(3) + \frac{(x)(0)}{(3)})) + 3x^{2} + \frac{\frac{1}{3}}{x^{\frac{2}{3}}} - \frac{\frac{-1}{3}}{x^{\frac{4}{3}}}\\=&{3}^{x}ln(3) + 3x^{2} + \frac{1}{3x^{\frac{2}{3}}} + \frac{1}{3x^{\frac{4}{3}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return