There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{xb}{(2x + b)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{bx}{(2x + b)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{bx}{(2x + b)}\right)}{dx}\\=&(\frac{-(2 + 0)}{(2x + b)^{2}})bx + \frac{b}{(2x + b)}\\=&\frac{-2bx}{(2x + b)^{2}} + \frac{b}{(2x + b)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !