There are 1 questions in this calculation: for each question, the 1 derivative of n is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ n({4}^{\frac{1}{n}} - 1)\ with\ respect\ to\ n:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = n{4}^{\frac{1}{n}} - n\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( n{4}^{\frac{1}{n}} - n\right)}{dn}\\=&{4}^{\frac{1}{n}} + n({4}^{\frac{1}{n}}((\frac{-1}{n^{2}})ln(4) + \frac{(\frac{1}{n})(0)}{(4)})) - 1\\=&{4}^{\frac{1}{n}} - \frac{{4}^{\frac{1}{n}}ln(4)}{n} - 1\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !