There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(h + x){(2h - x)}^{2}}{(4ah - 2ax)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{3hx^{2}}{(4ha - 2ax)} + \frac{4h^{3}}{(4ha - 2ax)} + \frac{x^{3}}{(4ha - 2ax)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{3hx^{2}}{(4ha - 2ax)} + \frac{4h^{3}}{(4ha - 2ax)} + \frac{x^{3}}{(4ha - 2ax)}\right)}{dx}\\=& - 3(\frac{-(0 - 2a)}{(4ha - 2ax)^{2}})hx^{2} - \frac{3h*2x}{(4ha - 2ax)} + 4(\frac{-(0 - 2a)}{(4ha - 2ax)^{2}})h^{3} + 0 + (\frac{-(0 - 2a)}{(4ha - 2ax)^{2}})x^{3} + \frac{3x^{2}}{(4ha - 2ax)}\\=& - \frac{6hax^{2}}{(4ha - 2ax)^{2}} - \frac{6hx}{(4ha - 2ax)} + \frac{8h^{3}a}{(4ha - 2ax)^{2}} + \frac{2ax^{3}}{(4ha - 2ax)^{2}} + \frac{3x^{2}}{(4ha - 2ax)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !