Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(sqrt(1 - {x}^{2}) + 2)}{(x + 1)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{sqrt(-x^{2} + 1)}{(x + 1)} + \frac{2}{(x + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{sqrt(-x^{2} + 1)}{(x + 1)} + \frac{2}{(x + 1)}\right)}{dx}\\=&(\frac{-(1 + 0)}{(x + 1)^{2}})sqrt(-x^{2} + 1) + \frac{(-2x + 0)*\frac{1}{2}}{(x + 1)(-x^{2} + 1)^{\frac{1}{2}}} + 2(\frac{-(1 + 0)}{(x + 1)^{2}})\\=&\frac{-sqrt(-x^{2} + 1)}{(x + 1)^{2}} - \frac{x}{(x + 1)(-x^{2} + 1)^{\frac{1}{2}}} - \frac{2}{(x + 1)^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return