There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ a + bx + c{x}^{2} + d{x}^{3} + {e^{x}}^{4} + f{x}^{5}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = a + bx + cx^{2} + dx^{3} + e^{{x}*{4}} + fx^{5}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( a + bx + cx^{2} + dx^{3} + e^{{x}*{4}} + fx^{5}\right)}{dx}\\=&0 + b + c*2x + d*3x^{2} + 4e^{{x}*{3}}e^{x} + f*5x^{4}\\=&b + 2cx + 3dx^{2} + 4e^{{x}*{4}} + 5fx^{4}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !