Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ xsqrt(9 - {x}^{x})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xsqrt(-{x}^{x} + 9)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xsqrt(-{x}^{x} + 9)\right)}{dx}\\=&sqrt(-{x}^{x} + 9) + \frac{x(-({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})) + 0)*\frac{1}{2}}{(-{x}^{x} + 9)^{\frac{1}{2}}}\\=&sqrt(-{x}^{x} + 9) - \frac{x{x}^{x}ln(x)}{2(-{x}^{x} + 9)^{\frac{1}{2}}} - \frac{x{x}^{x}}{2(-{x}^{x} + 9)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return