There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ x{e}^{(x - 1)} - \frac{axxx}{3} - \frac{axx}{2} + 1\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x{e}^{(x - 1)} - \frac{1}{3}ax^{3} - \frac{1}{2}ax^{2} + 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x{e}^{(x - 1)} - \frac{1}{3}ax^{3} - \frac{1}{2}ax^{2} + 1\right)}{dx}\\=&{e}^{(x - 1)} + x({e}^{(x - 1)}((1 + 0)ln(e) + \frac{(x - 1)(0)}{(e)})) - \frac{1}{3}a*3x^{2} - \frac{1}{2}a*2x + 0\\=&{e}^{(x - 1)} + x{e}^{(x - 1)} - ax^{2} - ax\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !