There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{60}{(x + 1)} + \frac{40}{(1.35 + x)} - \frac{100}{(1.1 + x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{60}{(x + 1)} + \frac{40}{(x + 1.35)} - \frac{100}{(x + 1.1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{60}{(x + 1)} + \frac{40}{(x + 1.35)} - \frac{100}{(x + 1.1)}\right)}{dx}\\=&60(\frac{-(1 + 0)}{(x + 1)^{2}}) + 40(\frac{-(1 + 0)}{(x + 1.35)^{2}}) - 100(\frac{-(1 + 0)}{(x + 1.1)^{2}})\\=&\frac{-60}{(x + 1)(x + 1)} - \frac{40}{(x + 1.35)(x + 1.35)} + \frac{100}{(x + 1.1)(x + 1.1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !