There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {e}^{x} - ex - {(xln(x))}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e}^{x} - xe - x^{2}ln^{2}(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{x} - xe - x^{2}ln^{2}(x)\right)}{dx}\\=&({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) - e - x*0 - 2xln^{2}(x) - \frac{x^{2}*2ln(x)}{(x)}\\=&{e}^{x} - e - 2xln^{2}(x) - 2xln(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !