Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ({2}^{x} - 1 - x){\frac{1}{2}}^{x} + 3\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {2}^{(2(x))} - {\frac{1}{2}}^{x} - x{\frac{1}{2}}^{x} + 3\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {2}^{(2(x))} - {\frac{1}{2}}^{x} - x{\frac{1}{2}}^{x} + 3\right)}{dx}\\=&({2}^{(2(x))}((2(1))ln(2) + \frac{(2(x))(0)}{(2)})) - ({\frac{1}{2}}^{x}((1)ln(\frac{1}{2}) + \frac{(x)(0)}{(\frac{1}{2})})) - {\frac{1}{2}}^{x} - x({\frac{1}{2}}^{x}((1)ln(\frac{1}{2}) + \frac{(x)(0)}{(\frac{1}{2})})) + 0\\=&2 * {2}^{(2x)}ln(2) - {\frac{1}{2}}^{x}ln(\frac{1}{2}) - {\frac{1}{2}}^{x} - x{\frac{1}{2}}^{x}ln(\frac{1}{2})\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return