There are 1 questions in this calculation: for each question, the 1 derivative of a is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {log_{(1 - p)}^{1 - p}}^{a}\ with\ respect\ to\ a:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {log_{-p + 1}^{-p + 1}}^{a}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {log_{-p + 1}^{-p + 1}}^{a}\right)}{da}\\=&({log_{-p + 1}^{-p + 1}}^{a}((1)ln(log_{-p + 1}^{-p + 1}) + \frac{(a)((\frac{(\frac{(0 + 0)}{(-p + 1)} - \frac{(0 + 0)log_{-p + 1}^{-p + 1}}{(-p + 1)})}{(ln(-p + 1))}))}{(log_{-p + 1}^{-p + 1})}))\\=&{log_{-p + 1}^{-p + 1}}^{a}ln(log_{-p + 1}^{-p + 1})\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !