There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{y}ln(x)yln(y)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = y{x}^{y}ln(x)ln(y)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( y{x}^{y}ln(x)ln(y)\right)}{dx}\\=&y({x}^{y}((0)ln(x) + \frac{(y)(1)}{(x)}))ln(x)ln(y) + \frac{y{x}^{y}ln(y)}{(x)} + \frac{y{x}^{y}ln(x)*0}{(y)}\\=&\frac{y^{2}{x}^{y}ln(x)ln(y)}{x} + \frac{y{x}^{y}ln(y)}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !