There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{{x}^{\frac{1}{2}}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {x}^{x^{\frac{1}{2}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {x}^{x^{\frac{1}{2}}}\right)}{dx}\\=&({x}^{x^{\frac{1}{2}}}((\frac{\frac{1}{2}}{x^{\frac{1}{2}}})ln(x) + \frac{(x^{\frac{1}{2}})(1)}{(x)}))\\=&\frac{{x}^{x^{\frac{1}{2}}}ln(x)}{2x^{\frac{1}{2}}} + \frac{{x}^{x^{\frac{1}{2}}}}{x^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !